Climate change and air quality concerns have pushed clean energy up the global agenda. As we switch over to new, cleaner technologies and fuels, our experience of using power, heat and transport are going to change, transforming the way we live, work. Explore the sections below to find out more.

Exclusive article by



Why does hydrogen matter? 
We need to meet our energy needs in a clean, sustainable way. Hydrogen is a potential option, as it can be produced and used without releasing harmful emissions
What is hydrogen? Hydrogen is a chemical element that can be burned or used in chemical reactions to provide energy
What are the challenges? Producing, storing and moving hydrogen all require energy and resources and there are costs and risks involved

We use fossil fuels – coal, oil and natural gas – to meet most of our energy needs; to heat our homes, cook our food and power our cars. This has harmful impacts on our health, nature and the environment. Sustainable alternatives are required to meet our energy needs and hydrogen could be one such option.Hydrogen is an energy carrier – it contains energy.

Hydrogen can be used to produce energy with zero smoke, pollution or climate warming emissions – the only product is water. Producing hydrogen requires energy, but as long as it is made in a sustainable, low-carbon way, it is a potential alternative to burning fossil fuels. This could reduce the negative effects of greenhouse gas emissions and air pollution.


Extracting, processing and burning fossil fuels produce waste gases, including carbon dioxide (CO2), nitrogen oxides (NOx) and methane. As heat from the sun reaches the Earth, these gases trap extra heat in the atmosphere, which warms the planet. The glass roof of a greenhouse traps heat in a similar way, and therefore the gases are known as greenhouse gases. There is now overwhelming evidence that human-induced greenhouse gases are altering the Earth’s climate. This is known as climate change.

Burning fossil fuels also produces air pollution which can cause asthma, bronchitis and other health conditions. This is a particular problem in big cities, where exhaust fumes from homes, vehicles and power plants have a clear impact on public health.

What is hydrogen?

Hydrogen is a chemical element – one of the building blocks that all matter in the universe is made of. Of all the elements, it is the simplest and most abundant. Down on Earth, finding hydrogen gas in nature is very rare. However, hydrogen is reactive and forms chemical bonds with many other elements. As a result, there are huge amounts of hydrogen bound up in common substances such as water, methane and propane. 

At normal room temperature and pressure hydrogen is a nontoxic gas; it has no taste, colour or smell, which makes it difficult to detect. If cooled to extremely cold temperatures (-253°C or lower) it becomes a liquid. Hydrogen is flammable and ignites easily in air, and it burns at over 2000°C with a very pale blue, near-colourless flame. When it burns, it reacts with oxygen in the air to produce water – the word hydrogen roughly translates to ‘water-maker’. Like natural gas, hydrogen can produce some NOx emissions when burned – however this can be managed with modern burner technology.

What are the challenges?

Just like any other energy carrier, there are challenges to using hydrogen; the main challenges are safety, cost, and making sure production is sustainable and low carbon. Hydrogen has been used in industry for many years but the vast majority is not produced in a low-carbon way – instead, natural gas and coal are used, which contributes to climate change. Storing and moving hydrogen around also require resources and involve costs and risks. Just like natural gas, hydrogen is flammable, so it must be treated with care to keep people safe.

If hydrogen is used in new ways to support a clean energy system, large volumes would need to be produced sustainably. Technology for producing low-carbon hydrogen already exists, but, at present, it is more expensive than other production methods or alternative fuels. Investment in new production facilities and supply chains would be required to meet higher demand and reduce unit costs.


What can we use hydrogen for? It can be used for heat and power, as part of the production of other chemicals, or to store energy for later use
Supporting renewable energy Hydrogen can act as an energy store as a backup for renewable sources like solar power or wind power
Using hydrogen safely Preventing leaks, adding a scent, transporting it carefully and controlled burning can help minimise risks

What can we use hydrogen for? Hydrogen is valuable because it is an energy carrier that can be used in many different ways:

  • As a replacement for fossil fuels in many areas
  • As a feedstock for industry and chemicals
  • As a way of supporting renewable power and heat

Business and industry explores how most of the hydrogen produced today is used in industry as a feedstock to make products like fertilisers and metals.


Supporting renewable energy

Each year, the amount of renewable energy (such as wind power, biomass and solar power) used globally grows. While weather-based energy sources are clean and sustainable, we have no control over when they provide power – they only work when the wind blows or the sun shines. Sometimes the amount of renewable energy available does not match demand, so other energy sources such as natural gas are required to make up the difference. Along with batteries or hydroelectric dams, hydrogen could change this by storing up surplus energy for when it is needed. The gas can be stored in pressurised containers, or underground given suitable geology such as salt caverns.

One example of storing energy as hydrogen is a process called power-to-gas.

Just like with any energy conversion, there will be some losses involved in the power-to-gas process. Nevertheless, hydrogen has the potential to be a cheaper energy store than batteries. Examples of power-to-gas include GRHYD, a project in the Dunkirk region run by energy company ENGIE and supported by the French Government; and German project Energiepark Mainz.

Using hydrogen safely

Hydrogen is flammable and ignites easily, which carries safety risks. Hydrogen gas has unique physical and chemical properties; understanding the way it behaves in different situations is vital so it can be used safely. Organisations such as the UK Health and Safety Executive and Hydrogen Europe, as well as private companies, are conducting research into the operational risks of using hydrogen for new applications like heat and transport. When using a new energy source, it is important to learn as much as possible about any potential risks and how to manage them – our use of natural gas has progressed in the same way.

Hydrogen is a non-toxic gas with no colour, taste or smell. It burns with a very pale blue flame and does not produce hot ash or smoke, so it is difficult to detect when it is burning or leaking. One option is to add a suitable strong-smelling chemical called an odorant to the gas mix so that it is easy to detect – an odorant is what gives natural gas its distinctive smell. However, odorants can contaminate technologies, such as fuel cells, which require pure hydrogen gas.

Hydrogen gas has a lower density than air, which means that if it leaks, it will quickly float away. However, as with other flammable gases, if the leak is indoors the gas could build up and cause a fire or explosion. Buildings using hydrogen should include suitable ventilation for pipes and boiler systems – rooms can also include one-way, mechanical ventilation which will allow any gas that builds up to escape. Infra-red sensors can be installed to detect leaks at the meter.

Methods of making hydrogen The main processes for making hydrogen use natural gas, coal, or electricity with water
Other options for hydrogen production Biomass, solar power and nuclear power could all be used to make hydrogen in the future
The different ‘colours’ of hydrogen The environmental impact of making hydrogen depends on how it is made, and what it is made from

Although it is a very common element, there are no large reserves of hydrogen gas on Earth. This is because it bonds with other elements, so the hydrogen we need is locked up in other substances. By using energy (heat, electricity etc) it is possible to separate out the hydrogen from feedstocks such as water and methane.

Today, over 95% of dedicated hydrogen production is from natural gas or coal, which produces greenhouse gas emissions. If we want to use hydrogen to help reduce greenhouse gas emissions, switching to a low-carbon method of production is required. The environmental impact of making hydrogen depends on what it is made out of (the feedstock) and the source of energy used to drive the process.

Current methods of making hydrogen

Hydrogen from fossil fuels

The most common method of making hydrogen today is called steam methane reformation (SMR), which combines methane (from natural gas) and water at very high temperatures (approximately 900°C) to produce a mix of carbon monoxide, carbon dioxide (CO2) and hydrogen. By controlling the amount of air, water and methane in the reaction, engineers can alter the SMR process and change the amount of energy required and waste gases produced.

Hydrogen can also be made from coal in a process called gasification. A syngas is created using coal and water at high temperatures. Above 750°C, the carbon in coal reacts with water to form a mix of gases, including hydrogen and carbon dioxide. The coal is used to provide the heat that the reaction needs to work.

Using fossil fuels to make hydrogen produces waste greenhouse gases. To make the process environmentally friendly, waste gases must be prevented from reaching the atmosphere by using carbon capture usage and storage (CCUS) technology, which can remove and store up to 97% of the CO2 emissions that are produced. However, CCUS is not widely commercially available at present.

Electrolysis is a process which uses electricity to split water into hydrogen and oxygen, using an electrolyser.

The electricity can come from a range of sources, such as wind power, solar power, nuclear power or fossil fuels. Any hydrogen produced is low carbon as long as the electricity used in the process is from low-carbon energy sources. Today, less than 5% of dedicated hydrogen production uses electrolysis; the process is expensive due to the cost of electricity (especially from low-carbon sources) and equipment. Production costs are expected to decrease as the cost and size of electrolysers improve.

Unlike other methods, electrolysis works at low temperatures, typically 20-100°C, and is capable of producing hydrogen at a range of scales. For example, ITM Power has built eight hydrogen refuelling stations in the UK, each supplied by an on-site electrolyser powered by renewable energy. There are large-scale electrolysis projects too; ENGIE plans to install electrolysers on an offshore platform in the North Sea, powered by electricity from offshore wind power. The hydrogen produced can be brought onshore using existing gas pipelines.

Hydrogen from electricity

Other options for hydrogen production

Another energy carrier from which hydrogen is made is biomass. Using gasification, biomass is heated and mixed with steam and oxygen to produce hydrogen without combustion (burning). Scientists and engineers are always on the hunt for new methods of making hydrogen, such as novel ways of using solar power or nuclear power to break apart water at a range of temperatures to get hydrogen and oxygen.

The different ‘colours’ of hydrogen

Hydrogen is often described by a colour. This does not describe what it looks like, but how environmentally friendly the process of making it is.

The CCUS technology needed to safely remove greenhouse gas emissions and store them is not yet widespread. As of the start of 2020 there are just 19 ‘large-scale’ projects in operation worldwide; it is likely that blue hydrogen will become more common as CCUS becomes cheaper and more widely used.

Nevertheless, blue hydrogen is currently estimated to be the cheapest option for producing hydrogen gas in a low-carbon way. As the availability and price of renewable electricity improves, coupled with a fall in the costs of electrolysis equipment , green hydrogen could potentially become the dominant type in use over the next 30 years. See What's next for hydrogen? for more.

 


Gas pipelines Hydrogen
could be pumped through gas pipelines, similar to natural gas today
Compressed gas Hydrogen gas can be compressed into containers for transport on trucks or trains
Liquid hydrogen Cooling hydrogen so that it is in liquid form allows it to store a lot more energy in a smaller space, but the cooling process is expensive and energy-intensive

Like fossil fuels, hydrogen is often produced far away from where it will be used, and must be transported over long distances to homes, factories or refuelling stations. It is less dense than air, so it will escape and quickly disperse if there are any leaks in a container or pipe. 

Additionally, hydrogen is not very energy dense by volume when compared to traditional fuels like petrol. For example, to match the energy stored in one litre of petrol, you would need over 18 litres of hydrogen at high pressure (200 bar). Part of the challenge of transporting hydrogen is finding ways of increasing its energy density – this could mean moving it around as a liquid or a high pressure gas, safely and cheaply.

Gas pipelines
For long-distance transport, hydrogen can be pumped through gas pipelines. There are hundreds of kilometres of hydrogen pipes in the world already, for example in the USA, Germany and Belgium. Maintaining a system of pipes requires constant work; hydrogen gas leaks from small gaps, so there must be regular checks for wear and tear, particularly at valves and joints. Some countries already have wide networks of natural gas pipes linked up to homes and businesses, which could be converted to carry hydrogen. See Home heating and cooking for more.


Compressed gas and liquid hydrogen

One way of increasing the amount of energy stored by hydrogen is to compress a lot of gas into a small container, usually made of aluminium reinforced with plastic, fibreglass or carbon fibre. The containers can then be loaded onto trucks and delivered to where they are needed – no hydrogen is lost as long as the container is secure.

At extremely low temperatures (below -253°C) hydrogen becomes a liquid. Liquid hydrogen is 800 times denser than hydrogen gas in the atmosphere, so liquefaction is an attractive option for storing a lot of energy in a small space. Liquefaction technology has been used since the 1960s to transport natural gas, but for hydrogen the process is more expensive and energy intensive, as the temperatures required are much lower (-253°C compared to -162°C).

Liquid hydrogen is transported by road, rail or ship, depending upon the distance and the amount needed. Over time heat will gradually leak into the cold store, converting the liquid to gas and causing some of the hydrogen to be lost.

Future options for moving hydrogen around

Research is ongoing to create solids or liquids that can absorb large volumes of hydrogen, for easy transportation. One option is to convert hydrogen into liquid ammonia for the duration of travel – this comes with a different set of hazards to hydrogen, as ammonia is toxic. The hope is that these future options can address many of the cost and safety concerns surrounding current methods of high-pressure or liquid storage.


Current uses for hydrogen 
Most of the hydrogen made today is used in the petroleum refining process or as one of the main chemical ingredients in fertilisers
Safety and regulations Technical and health regulations for hydrogen have been developed through 90 years of industry experience
New jobs and skills Using more hydrogen could mean more jobs in construction, manufacturing, industry and engineering

Although the idea of using hydrogen might be new to some, hydrogen gas has been used for decades in industry to make a wide range of products. 70 million tonnes of hydrogen are produced worldwide each year (as well as 48 million tonnes created as a by-product from other industrial processes), enough to heat every home in Europe. As of 2019, nearly all of this hydrogen is produced from fossil fuels. The global market for hydrogen production is growing and worth over $115bn (£90bn) – growth could speed up if hydrogen is needed for new applications like heat and transport.

Current uses for hydrogen

Today, the most common uses for hydrogen are:

1. Petroleum refining – reducing the amount of harmful sulphur oxides contained in fuels, as well as for splitting crude oil into useful hydrocarbons such as ethane and liquid petroleum gas
2. Ammonia production – this is one of the three key ingredients in fertilisers. This allows us to grow food in fields that would normally lack key nutrients
3. Methanol production – a useful chemical used in paints, fabrics and fibres
4. Steel production – hydrogen is used in the steel making process, and engineers are testing ways of using it to replace coal entirely
5. Other minor uses include parts of the manufacturing process for plastics, resins, flat sheets of glass and silicon microchips, as well as a coolant for large electrical generators

Space travel

Hydrogen was first used for space exploration by NASA in the 1960s and it has remained an important part of space travel ever since. NASA and the European Space Agency both use hydrogen as a propellant in rocket fuel, as it is very light and burns at a high temperature. Hydrogen fuel cells are also used as a power source for spacecraft and space vehicles. On the Space Shuttle, three fuel cells were used to power all the electronics in the craft. As a bonus, fuel cells produce water as a waste product, which can be consumed by astronauts.

Safety and regulations

Industrial companies have been using hydrogen since the 1930s, when the gas was first used as a generator coolant by the Dayton Power & Light Co. in Ohio, USA. Over the following years, companies and governments have worked together to create regulations and codes that ensure using hydrogen is safe and low risk. There are at least 16 international bodies developing guidance and over 400 different standards worldwide supporting hydrogen development and deployment. This covers everything from how to store hydrogen securely, to regulations on the types of pipes and valves used. Although these regulations were designed for business and industry, this know-how can also be applied when using hydrogen in new areas, such as safely heating a home.

Other industrial uses for hydrogen

If current trends continue, the amount of hydrogen needed in industry is set to grow as the world uses more steel, methanol, ammonia and petroleum products each year. There are possible new roles for hydrogen too – because it burns at a very high temperature, hydrogen gas could replace fossil fuels entirely in some high-temperature (over 400°C) industrial applications, such as steel making and fuelling cement kilns.

About one third of all the hydrogen produced today is a by-product from industrial processes, such as the production of chlorine, propane and high-octane fuels. This hydrogen can be used for making methanol and steel. However, as it contains small amounts of other gases (carbon dioxide, oxygen, methane or argon), it is not pure enough for use in fuel cells or petroleum refining without further treatment.

New jobs and skills

Supporters of hydrogen argue that if it is used more widely, it would create a significant number of skilled jobs. Producing and transporting hydrogen could boost the construction, manufacturing and machinery industries; skilled technical workers will be needed at companies making hydrogen technology, vehicles and appliances. Countries which are early adopters of hydrogen could have the opportunity to capitalise on intellectual property, knowledge and skills.

In the UK, a number of new hydrogen projects are based in existing industrial areas. This is practical, as there are intensive energy users (e.g. steel production), and a local population that have the skills to be re-trained to work with hydrogen. Often, industrial centres are in a geographically beneficial position due to their location near salt mines (for storage) and the coast (for carbon capture usage and storage capabilities).

Examples include the HyNet Project, which aims to develop hydrogen for heating, power and transport in the north west of England, expected to create 5000 new jobs by 2025; and the Zero Carbon Humber project, centred around making hydrogen at an industrial hub in the north east of England, an area that has suffered economically as steel, coal and manufacturing employment has been lost.


Interest in hydrogen today 
While mainly used in industry today, interest in hydrogen is growing, with research and pilot projects springing up worldwide
How would hydrogen be most effective? Hydrogen will be better suited for some applications than others, depending on practicalities and cost

Hydrogen stands out as an appealing and flexible energy carrier. If produced cheaply and cleanly, it has the potential to replace fossil fuels for applications that cannot easily be electrified. However, the abundance, low cost and convenience of fossil fuels means that hydrogen has not been used widely outside of industrial processes. Due to a number of factors, including the need to reduce greenhouse gas emissions, this could be about to change

Interest in hydrogen today

Today, hydrogen is most commonly used in industry, mainly for petroleum refining and production of ammonia and methanol. In addition, several countries are beginning to increase development of hydrogen technology and infrastructure. Different countries are using hydrogen for different reasons – it could be to meet climate change and emissions targets (Europe), the need to reduce reliance on coal (China) or a desire to improve low-carbon transport and develop a hydrogen export industry (Australia).

How would hydrogen be most effective?

We have used hydrogen in lots of ways since its discovery in the 1700s – to fill blimps and airships, make fertilisers and turn crude oil into petroleum products. However, hydrogen has the potential for much more varied applications, although it is not yet clear which will take precedence. As with any energy source, the usefulness and value of hydrogen will depend on a number of factors which vary with location, sector and end use. How hydrogen continues to impact on our lives will depend on these new applications.

Some of the most important factors which will determine the future role of hydrogen include:

Cost

Predicting the future cost of hydrogen is difficult, as it depends on the method of production and the price of the feedstock needed to make it. ‘Green’ hydrogen, which is made using renewable electricity and water, is currently the most expensive. ‘Blue’ hydrogen, made using natural gas, has been touted as a cheaper option that is still low carbon (carbon capture usage and storage (CCUS) technology is used to prevent greenhouse gases being emitted). However, there are still questions over the availability of CCUS, and how it will work at scale.

What is clear is that renewable energy, hydrogen equipment and CCUS are all becoming cheaper. Optimistic predictions expect ‘green’ hydrogen to roughly halve in cost by 2030, which would make using it a lot more attractive as an alternative to fossil fuels.

Climate change and public awareness

Climate change has risen up the agenda due to the impact of extreme weather events, such as wildfires, floods and heatwaves. High-profile climate protests were often in the news in 2019, led by groups such as Extinction Rebellion and the Sunrise Movement. At the same time, governments and businesses are starting to recognise the risks of climate change and the need to end reliance on fossil fuels.

Some countries, such as the UK, France and Norway, have committed to the ambitious target of eliminating all greenhouse gas emissions by the middle of the 21st century. To meet this target, hydrogen has been cited as an essential tool. This is likely to drive demand for hydrogen in advanced economies sooner than it would in developing economies, where access to energy or switching away from coal are a higher priority than decarbonising supplies.

Infrastructure and technology development

Support from both public and private investors can kick-start the process of building hydrogen infrastructure. Alongside governments, support for new hydrogen projects could come from a range of sources, such as gas companies, car manufacturers and engineering firms. For instance, the Hydrogen Council, founded in 2017, is an initiative led by a number of companies working in energy, transport and industry, and works to boost investment in hydrogen and fuel cells. However, private investment is unlikely to occur without some significant public policy or tax interventions.

The state of infrastructure and technology will again vary from place to place; countries like the UK, which have an established gas grid, may be more likely to seek alternative gases such as hydrogen to heat homes. At a more local scale, areas which have heavy industries may be better suited to hydrogen production because of existing infrastructure or the skills of the local workforce. When it comes to personal transport, there is a lot more interest and investment in using batteries for cars rather than fuel cells. However, hydrogen may be more suited for powering buses, forklifts and freight trucks.


Find out the wealth of business opportunities that lie ahead for you at the Green Hydrogen Zone at Middle East Energy 2021.